Systematic Integration of Parameterized Local Search Techniques in Evolutionary Algorithms
نویسندگان
چکیده
Application-specific, parameterized local search algorithms (PLSAs), in which optimization accuracy can be traded off with runtime, arise naturally in many optimization contexts. We introduce a novel approach, called simulated heating, for systematically integrating parameterized local search into evolutionary algorithms (EAs). Using the framework of simulated heating, we investigate both static and dynamic strategies for systematically managing the trade-off between PLSA accuracy and optimization effort. Our goal is to achieve maximum solution quality within a fixed optimization time budget. We show that the simulated heating technique better utilizes the given optimization time resources than standard hybrid methods that employ fixed parameters, and that the technique is less sensitive to these parameter settings. We demonstrate our techniques on the well-known binary knapsack problem and two problems in electronic design automation. We compare our results to the standard hybrid methods, and show quantitatively that careful management of this trade-off is necessary to achieve the full potential of an EA/PLSA combination.
منابع مشابه
Using composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir
In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...
متن کاملA Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کاملOptimizing the Efficiency of Parameterized Local Search within Global Search: A Preliminary Study
Application-specific, parameterized local search algorithms (PLSAs), in which optimization accuracy can be traded-off with run-time, arise naturally in many optimization contexts. We introduce a novel approach, called simulated heating, for systematically integrating parameterized local search into global search algorithms (GSAs) in general and evolutionary algorithms in particular. Using the f...
متن کاملA Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملA Parameterized Runtime Analysis of Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem
We contribute to the theoretical understanding of evolutionary algorithms and carry out a parameterized analysis of evolutionary algorithms for the Euclidean traveling salesperson problem (Euclidean TSP). We exploit structural properties related to the optimization process of evolutionary algorithms for this problem and use them to bound the runtime of evolutionary algorithms. Our analysis stud...
متن کامل